1 Holonomy in the Schwarzschild - Droste Geometry
نویسندگان
چکیده
Parallel transport of vectors in curved spacetimes generally results in a deficit angle between the directions of the initial and final vectors. We examine such holonomy in the Schwarzschild-Droste geometry and find a number of interesting features that are not widely known. For example, parallel transport around circular orbits results in a quantized band structure of holonomy invariance. We also examine radial holonomy and extend the analysis to spinors and to the Reissner-Nordström metric, where we find qualitatively different behavior for the extremal (Q = M) case. Our calculations provide a toolbox that will hopefully be useful in the investigation of quantum parallel transport in Hilbert-fibered spacetimes. PACS: 04.20-q, 04.70Bw, 04.20-Cv
منابع مشابه
80 70 v 4 1 5 M ay 2 00 1 Holonomy in the Schwarzschild - Droste Geometry
Parallel transport of vectors in curved spacetimes generally results in a deficit angle between the directions of the initial and final vectors. We examine such holonomy in the Schwarzschild-Droste geometry and find a number of interesting features that are not widely known. For example, parallel transport around circular orbits results in a quantized band structure of holonomy invariance. We a...
متن کامل70 v 3 2 3 Fe b 20 01 Holonomy in the Schwarzschild - Droste Geometry
Parallel transport of vectors in curved spacetimes generally results in a deficit angle between the directions of the initial and final vectors. We examine such holonomy in the Schwarzschild-Droste geometry and find a number of interesting features that are not widely known. For example, parallel transport around circular orbits results in a quantized band structure of holonomy invariance. We a...
متن کاملRay-tracing and Interferometry in Schwarzschild Geometry
Here, we investigate the possible optical anisotropy of vacuum due to gravitational field. In doing this, we provide sufficient evidence from direct coordinate integration of the null-geodesic equations obtained from the Lagrangian method, as well as ray-tracing equations obtained from the Plebanski’s equivalent medium theory. All calculations are done for the Schwarzschild geometry, which resu...
متن کاملSolution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...
متن کاملMath 144 Notes: Riemannian Geometry
1. Manifolds: 1/7/14 1 2. Tangent and Cotangent Spaces: 1/9/14 3 3. Vector Fields, One-Forms, and Riemannian Metrics: 1/14/14 6 4. The Lie Bracket and Riemannian Connections: 1/16/14 8 5. Existence and Uniqueness of the Riemannian Connection: 1/21/14 10 6. Tensor Fields, Parallel Transport, and Holonomy: 1/23/14 13 7. The Riemann Curvature Tensor: 1/28/14 15 8. Flatness: 1/30/14 17 9. Symmetrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008